5 resultados para Catalase

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sigmoidin A (SGN) is a prenylated flavanone derivative of eriodictyol (ERD) with reported moderate antioxidant, antimicrobial and anti-inflammatory activity. Since ERD and other structurally similar antioxidant phenolic compounds have been shown to induce prooxidative macromolecular damage and cytotoxicity in cancer cells, the comparative in vitro effects of these structural analogues on cancer cell viability and Cu(II)-dependent DNA damage were studied. In the presence of Cu(II) ions, both SGN and ERD (7.4-236 µM) caused comparable concentration-dependent pBR322 plasmid DNA strand scission. The DNA damage induced by SGN and ERD could be abolished by ROS scavengers, glutathione (GSH) and catalase as well as EDTA and a specific Cu(I) chelator neocuproine. Both ERD and SGN readily reduce Cu(II) to Cu(I) suggesting a prooxidative mechanism of DNA damage. In a cell free system, ERD and SGN did also show comparable radical scavenging activity. SGN was, however, by an order of magnitude more cytotoxic to cancer cells than ERD and this effect was significantly attenuated by GSH suggesting a prooxidative mechanism of cell death. A depletion of intracellular GSH level by SGN in cancer cells is also demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knipholone (KP) and knipholone anthrone (KA) are natural 4-phenylanthraquinone structural analogues with established differential biological activities including in vitro antioxidant and cytotoxic properties. By using DNA damage as an experimental model, the comparative Cu(II)-dependent prooxidant action of these two compounds were studied. In the presence of Cu(II) ions, the antioxidant KA (3.1-200 [mu]M) but not KP (6-384 [mu]M) caused a concentration-dependent pBR322 plasmid DNA strand scission. The DNA damage induced by KA could be abolished by reactive oxygen species scavengers, glutathione and catalase as well as EDTA and a specific Cu(I) chelator bathocuproine disulfonic acid. In addition to Cu(II) chelating activity, KA readily reduces Cu(II) to Cu(I). Copper-dependent generation of reactive oxygen species and the subsequent macromolecular damage may be involved in the antimicrobial and cytotoxic activity of KA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epilobium parviflorum Schreb. (Onagraceae) is used for the treatment of benign prostatic hyperplasia (BPH), but its biological action is not entirely identified. This paper aims to report data on E. parviflorum with respect to its antioxidant and antiinflammatory effects. The aqueous acetone extract of E. parviflorum showed higher antioxidant effect in the DPPH assay than well known antioxidants and inhibited the lipid peroxidation determined by the TBA assay (IC(50) = 2.37 +/- 0.12 mg/mL). In concentrations of 0.2-15.0 microg/mL the extract possessed a protective effect, comparable to catalase (250 IU/mL), against oxidative damage, generated in fibroblast cells. In the COX inhibition assay E. parviflorum decreased the PGE(2) release, so showing inhibition of the COX-enzyme (IC(50) = 1.4 +/- 0.1 microg/mL).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knipholone (KP) and knipholone anthrone (KA) are natural 4-phenylanthraquinone structural analogues with established differential biological activities including in vitro antioxidant and cytotoxic properties. By using DNA damage as an experimental model, the comparative Cu(II)-dependent prooxidant action of these two compounds were studied. In the presence of Cu(II) ions, the antioxidant KA (3.1-200 microM) but not KP (6-384 microM) caused a concentration-dependent pBR322 plasmid DNA strand scission. The DNA damage induced by KA could be abolished by reactive oxygen species scavengers, glutathione and catalase as well as EDTA and a specific Cu(I) chelator bathocuproine disulfonic acid. In addition to Cu(II) chelating activity, KA readily reduces Cu(II) to Cu(I). Copper-dependent generation of reactive oxygen species and the subsequent macromolecular damage may be involved in the antimicrobial and cytotoxic activity of KA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epilobium parviflorum Schreb. (Onagraceae) is used for the treatment of benign prostatic hyperplasia (BPH), which is regarded as an endocrine disorder caused by age-related hormone imbalance and increased oxidative damage [1,2,3]. Epilobium can moderate the obstructive and the irritative symptoms of BPH [1] but its biological action is not entirely identified. E. parviflorum is rich in phytosterols, flavonoids (myricetin, quercetin, kaempferol and their glycosides), phenolic acids, catechins, ellagi- and gallotannins [4]. The potential biological effects of Epilobium parviflorum Schreb. have been investigated, in respect to its antioxidant, anti-inflammatory, enzyme-inhibitory and anti-androgenic effect. The whole-plant water extract showed higher antioxidant effect (IC50=1.65±0.05µg/mL) in DPPH assay than Trolox or ascorbic acid and inhibited the lipid peroxidation examined in TBA assay (IC50=2.31±0.18mg/mL). In concentrations 0.20-15.00µg/mL the extract possessed a protective effect comparable to catalase enzyme (2500 IU/mL), against oxidative damage generated on fibroblast cells. The examination of the COX-inhibitory effect showed that E. parviflorum had an anti-inflammatory effect (IC50=1.38±0.08µg/mL). Investigation of steroid receptor binding ability and the aromatase enzyme-inhibition showed negative results in the concentration range examined.